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ABSTRACT 

A Banach space X is non-quasi-reflexive (i.e. dim X'**/X= oo) if and only if it 
contains a basic sequence spanning a non-quasi-reflexive subspace. In fact, 
this basic sequence can be chosen to be non-k-boundedly complete for all k. 
A basic sequence which is non-k-shrinking for all k exists in X if and only if 
X* contains a norming subspace of infinite codimension. This need not occur 
even if X is non-quasi-reflexive. Every norming subspace of X* has finite 
codimension if and only if for every norming M in X'*, every M-closed Yin X, 
M N y'r is norming over X/Y. This solves a problem due to Sch~iffer [19]. 

1. Introduction and notation 

J. J. Sch~iffer [19] asked i f  M is a norming subspace of X* and Y is an M- 

closed subspace of X, then is M N y_t a norming subspace of(X/Y)*? (Here y.L is 

identified with (X/Y)* in the canonical way. Relevant definitions appear below.) 

In Section 2 we give a counter-example, and in Section 4 we show that such a 

counter example can be constructed for X if and only if X* contains an infinite 

codimensional norming subspace. 

Section 2 consists of  the above mentioned example and two other examples 

concerning norming subspaces. Example 1 shows that non-quasi-reflexivity of  X 

does not yield the existence in X* of an infinite codimensional norming subspace. 

Example 3 gives an X such that X* contains a total subspace which is not norming 

over any subspace of X. (The examples in [8] and 114] of  total, non-norming 

subspaces of  X* are constructed in such a way that they norm some subspace of 

X.) 

t The second-named author was supported in part by NSF GP 28719. 
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In order to give the complete solution to the Sch/iffer problem, it was necessary 

to prove new existence theorems for basic sequences in Banach spaces. We prove 

in Section 3 that (a) If X* contains an infinite codimensional norming subspace, 

then X contains a basic sequence (xn) which is not k-shrinking for any k; i.e., the 

functionals on [xn] biorthogonal to (x~) span an infinite codimensional subspace 

of [x~]*, and (b) every non-quasi-reflexive space contains a basic sequence, (xn), 

which is not k-boundedly complete for any k; in fact, II x ll = l a n d  

(n k = 2-~k(k + 1)) is bounded. (Example 2 shows that the hypothesis on X in (a) 

cannot be weakened to '"X is non-quasi-reflexive"). The proof of (a) uses an 

extension of Pelczynski's technique [15] for constructing nonshrinking basic 

sequences in nonreflexive spaces. The proof of (b) is rather complicated and 

not at all similar to the usual method for constructing non-boundedly com- 

plete basic sequences in nonreflexive spaces. 

Of course, an immediate application of (b) is that every non-quasi-reflexive 

space contains a non-quasi-reflexive subspace with basis. Other applications are 

that if X is not quasi-reflexive, then X D Y such that Y and X / Y  are not quasi- 

reflexive; and if X* contains an infinite codimensional norming subspace, then X 

has a subspace Y such that X* and (X/Y)* both contain infinite codimensional 

norming subspaces. This last application is used in solving the Schfiffer problem. 

We now explain the terminology used. X, Y, Z, etc. refer to infinite dimensional 

Banach spaces. Subspaces are assumed closed. A space X is quasi-reflexive [3] 

provided that X has finite codimension in X**. (We always assume X is canoni- 

cally embedded in X**.) A subspace Z, of X* is norming over a subspace Y of 

X provided that there is a constant A such that [lyll ZAsup{lz(y)[ :z Z, 
[]z][ < 1} for each y~ Y. Then we say that Z is 2-norming over Y. When 

Y = X, we say Z is norming and call the smallest such constant 2 the norming 

constant of Z. Every norming subspace of X* has finite codimension in X* when 

X is quasi-reflexive, but Example 2 shows that the converse is false. 

For A c X ,  A -L is the annihilator of A in X*. For A c X*, A.L is the annihilator 

of A in X and ,4 is the weak* closure of A in X*. A subspace M of X* is total 

over X provided M• = {0). Note that, given M a subspace of X* and Y a subspace 

of X, Y is M-closed (i.e., Y is closed in X when X is given the weak topology 

from M) if and only if M OY • is total over X/Y.  Norming subspaces are total, 
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but every total subspace of X* is norming only if X is quasi-reflexive, (cf. [5]). 

We use standard facts about basic sequences (cf. [21,]). Suppose (x,) is a basic 

sequence with biorthogonal functionals (x*) in [x,,]* and k is a non-negative 

integer. Then (x.) is k-shrinking (resp., k-boundedly-complete) (cf. [20,1 ) provided 

rx*,] has codimension k in l,x,l* (resp., the image of [x,,] under the canonical 

embedding of l,x,, ] into [x*'1* has codimension k in [x*,1* ). The partial sum 

operators are defined by S,(u) = Y~ ~= 1 x*(u)xi, and the basis constant is simply 

sup !1 s. II, A sequence ( f ~ ) c  X* is weak*-basic if there is a sequence 

(x,) c X biorthogonal to (f~) such that u e [ f J  implies Y~ u(x,)f,, converges 

weak* to u. 

We would like to thank Professor Schaffer for calling our attention to his 

problem. 

2. Some examples 

The Sch/iffer problem has an affirmative answer when M is close to being 

minimal or maximal. Let M be a norming subspace of X* and Y an M-closed 

subspace of X. Suppose first that the natural map T: X ~ M* defined by (Tx)m 

= re(x) has finite codimensional range in M*. Then the natural map from X / Y  

into (M n Y• is one-to-one and has a finite codimensional (hence closed) 

range. Therefore this map is an isomorphism, whence M n Y• is norming over 

X / Y .  Secondly, suppose that M has finite codimension in X*. Then M n Y• has 

finite codimension in Y• and is total over X / Y ,  hence is norming over X / Y  by 

[8]. 

In particular, Sch~iffer's question has an affirmative answer when considering 

spaces X such that every norming subspace of X* has finite codimension in X*. 

Of course this happens when X is quasi-reflexive. Surprisingly, this can also occur 

when X is not quasi-reflexive, as illustrated by the following example, which 

was discovered in conversation with D. W. Dean. 

EXgMPLE 1. Let Z be the James-Lindenstrauss space with Z**/Z = Co(Cf. [131). 

If M is a norming subspace of Z*, then Z n M  • = (0) and Z +  M • is closed in 

Z** (cf. [8]), so the quotient map Q : z * * ~  c o has QIM" an isomorphism. 

Therefore M • is both a subspace of the separable conjugate space Z** and is 

isomorphic to a subspace of Co. Thus by [2.] and [17-I, M • is finite dimensional, 

proving that M has finite dimension in Z*. 

This example has another curious property. By Lemma 3 in Section IV below, 
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if Y is a subspace of Z, then every norming subspace of Y* has finite codimension 

in Y*. In particular, if (z,) is a basic sequence in Z with biorthogonal functionals 

z * (z*) in E ,] , then [z*-] has finite codimension in [z,]*. That is, every basic 

sequence in Z is k-shrinking for some k. On the other hand, since Z has a shrinking 

basis (cf. [13]), it follows from [7] that, for each k, Z has a basis which is k- 

shrinking. 

The second example gives a negative solution to the Sch/iffer problem. The 

complete solution to Schiiiier's question given in Section 4 was motivated by 

this construction. 

EXAMPLE 2. Let E be non reflexive and let X = ( ]~ E)co = {(ej) le j6E Vj 

e ~ 0 ,  I[(ej)ll = supllej l  I < oo}. Since E is nonreflexive, E* can be written as 

H @ [qS] with H norming. If  we let q~j denote q~ in the j-th copy of E* in (I~E*)I, 

= (X E)c*, then [~bj] is a weak* closed subspace of X*: Let s a,jq~j w*__, (fj). If  nl 

is the i-th coordinate projection on X, then 7r*(Ea.jq~j)= a.~q~i ~ f i ,  so that f i  

= a,~b, for some a~. Since X I[fi II = I1 (fi)II, it follows that (a,)E 11 so that (aiqS,) 

= ( ~ ) e  [qSj]. With the assumption that 1[ ~b I[ = 1, we can choose z e E with II z II 
< 2 and ~b(z) = 1. If we define P : E ~ [z] by P(e) = dp(e)z, P is a projection with 

[I P II < 2. Letting P j denote this projection in the j- th copy of E in X, it is easy 

to see that (2Pj)((ej))  = (Pjej) is a projection of X onto [zj] which in turn is 

isomorphic to Co in the natural way. If  we now let Y = [q~j]• it follows that 

X / Y  is isomorphic to Co, so that Y J- = [~bj] contains a total, non-norming subspace 

M~[14]. Now let Hj denote H in the j- th copy of E* in X*. It is easy to see that 

M2 = [Hj]  is a norming subspace of X*. 

Finally, let M = Mt + M2. Since M ~  M2, M is closed and norming. Also, 

M n  Y J- = M r ,  so that M (3 Y+ is total but non-norming over X/Y .  The totality 

of M (3 y_L guarantees that Y is M-closed. 

Using ideas of Bessaga and Pelczynski [1], J. C. Daneman proved that every 

subspace of l~ is norming over some subspace of c o. Our last example shows 

that there exists a Y and a total subspace of Y* which is not norming over any 

subspace of Y. 

EXAMPLE 3. Let Y be the space of James-Lindenstrauss [13] satisfying 

Y** = Y@ l~. Y is just the conjugate to the space X of Example 1. Y was con- 

structed so that there is a quotient mapping Q : Y* o.,o> Co with Q*6. =(0,c5.) 
W* 

(where (6,) is the usual basis for 11). Thus, (0, ft,) --, 0. Y has a normalized shrink- 

ing basis (x,), and of course, x, -~ 0. 
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Let p be a mapping of the integers onto themselves so that p-~(m) is infinite 

for each m. Let Z = [(xr(,),/~,)~=z]. Then (xp(,),6,) is equivalent to the usual 

basis for 11 because 

i = 1  i = 1  i = 1  

for all choices of scalars (~). 

We claim that Z is norming over no infinite dimensional subspace of Y*. 

For suppose W is a subspace of Y* and Z is norming over W. Then, since (Xp<,), fin) 

is equivalent to the usual basis for ll, there is a constant 2 such that II w II 
r  J 

<=4 supn(Xp(n),~5,)W for w E W. Thus, letting K = (Xp(n), fin), we have that the map 

T: W ~ C(K) defined by Tw(k) = k(w) is an isomorphism into. But it is easily 

seen from the facts that Xn -% 0 and (0, tS,) ~*0 that K = (xpr U (x,, 0) 

U {(0,0)}, so that K is countable. Hence by 1-17], TW and also W contain a 

subspace isomorphic to Co, which by [-2] contradicts the separability of Y*. 

However, Z is total. For suppose y* e Zj. and n e p -  t(m). Then 0 = (xp(,), fin) (Y*) 

= y*(Xm) + (O,~n)y*. Letting n ~ ~ through p- l (m),  we have Y*(Xm) = 0. Since 

m is arbitrary, y* = 0. 

3. Basic sequences in non-quasi-reflexive spaces 

It is relatively easy (proof of  Proposition 1) to find a separable non-quasi- 

reflexive subspace of an arbitrary non-quasi-reflexive space. Here we show that 

in fact, the separable subspace may be chosen to have a basis. 

In the remainder of the paper we use the notation nk = 2 -  ~k(k + 1). Note a~so 

that we index sequences from 0 to oo. 

THEOREM 1. I f  Y* contains a norming subspace of infinite codimension, then 

Y contains a basic sequence which is not k-shrinking for any k. In particular, 

i f  X is non-quasi-reflexive then X* contains a basic sequence which is not k- 

shrinking for any k. 

PROOF. Let N c Y* be norming with Y*/N infinite dimensional. Then Y*/N 

admits a biorthogonal system (u,; u*) satisfying 1] u, [I = 11 u'l[ = 1, [6]. Thus, 

there is a biorthogonal system (z," * ,z, ) with (z*) unit vectors in N l, (zn) c Y* 

and II z,[[ < 1  + 1/(n + 1). Let 2 be the norming constant of  N and let e , ~ 0  

with ei > 0 for i = 0,1,. . . .  We choose (x,) and finite dimensional subspaces 

F o c F i c ... of N to satisfy 
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To see that these conditions yield the 

standard constructive conditions which 
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Fi is 2(1 +e3-norming o v e r  [Xk]O ~ k < i 1, for i =  0, 1, . . . ,  

xi+ 1 ~ (F,)• for i = 0, 1, . . . ,  

Zk(Xnp+j) = (~kj for k =0 ,1  ..., p ; j  = 0,1...., p ' p  = 0,1,..., and 

[Ix, l[ < 1 + 1/( i  + 1) for i = O, 1,.... 

conclusion, notice that (1) and (2) are the 

guarantee that (x3 is basic with the n-th 

partial sum operator Sn satisfying II Sn I[ =< 2(1 + e,). Since (X,k+k; Zk)is a biortho- 

gonal system, condition (3) implies the linear independence of (Zkitx.]). Finally, 

no Zk can be in the closed span of the coefficient functionals since Zk(Xj) ~ 0 as 

j -~ oo and II x, II < 2 for all i. Thus, (xs) is non-k-shrinking for every k. The final 

assertion follows because X is a norming subspace of infinite codimension in X** 

if and only if X is non-quasi-reflexive. 

We now select the desired sequences inductively. By Helly's theorem, pick Xo 

so that [I Xo II < 2 and Zo(Xo) = 1. Choose F o to satisfy (1). Now suppose we have 

already chosen (x o, . . . ,x~+s ) and F o c ... cF~p+j. Suppose j < p. By Helly's 

theorem, we can pick x.~p+s+l with IIx~+s+l I] < 1 + 1/(np+j+2) and such that 

xn~+s+l agrees with z*+l on [F, ,+s,z  o, ...,Zp]. This x,p+j+l satisfies (2), (3), and 

(4). In case j = p, np + j  + 1 = np+1, and the only change from the case j < p is 

that one wants x,p+l to agree with Zo* on [F~+j,  Zo, ".., Zp+ 11. In each case, simply 

choose F~+j+I  D Fnp+j to satisfy (1). Q.E.D. 

REMARK 1. If S, denote the n-th partial sum operator on [-x,] and if 5 k= 

= Zk!tx.l, setfk = ( I -  S~)*Sk for each k. It is immediate that fk(X~+S)= ~kj for 

all p, k, and j = 0, 1,..., p. 

REMARK 2. If T is an isomorphism of Y into X* with X separable, and if 

T*X has infinite codimension in Y*, then the basic sequence (x~) in Y may be 

chosen so that (Tx~) is w*-basic. In this case, let N = T*X and in choosing the 

Fi's be sure also that [F~] = T*X. An easier version of the proof of Th. 3.1 

of [101 shows that (Tx~) is weak* basic. 

Applying this remark to Y = X* where X is separable and non-quasi-reflexive, 

we have that X has a quotient space with a basis which fails to be k-boundedly- 

complete for every k (see, e.g. [201). 

The next corollary is used in Section 4 in providing the complete solution to 

the Sch/iffer problem of Section 1. 

COROLLARY 1. I f  Y* contains a norming subspace of  infinite codimension, 
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then Y ~ Z such that (Y  /Z)* and Z* both contain normin# subspaces of  infinite 

codimension. 

PROOF. By Theorem 1 and Remark 1, there is a bounded basic sequence (Yn) 

c Y and a bounded sequence (fn) c Y* such thatfk(y,p+j) =C~kj for all p,k and 

for j =  0, ...,p. Let Z = [y~p+j[0 __< p < oo, j even]. Then, the natural basis for Z 

is non-k-shrinking for all k, so its coeffient functionals span a norming subspace 

of infinite codimension in Z*. If Q is the quotient map of Y onto Y/Z, then 

(Q(y~+j) [j is odd)is a bounded basic sequence (cf. [21,p. 26, Proposition 4.1]) 

which is non-k-shrinking for all k (since (fk I k is odd) is still a linearly independent 

subset of Z •  (Y/Z)*). Thus, as above, [Q(Yn~+j) IJ odd] c Y/Z  has desired 

property, so Y / Z  does also by Lemma 3 in Section 4. Q.E.D. 

The remaindzr of this section is devoted to the construction, in a non-quasi- 

reflexive space, of a non-quasi-reflexive subspace with basis. This lemma is a 

technical device needed in the construction: 

LEMMA 1. Suppose F is finite dimensional in X*, (Yn) c X *  is weak* null 
[ oo" and basic with II y, II -- l for  all n, and ( ,)i=o is a partition of  the natural 

numbers into pairwise disjoint infinite sets. Then for each 8 > O, there exist 

infinite sets I~-c Ifi j = 0,1, ..., such that the natural projection onto F from 

FO [y , ]ne  U I)] has norm <= 1 + 8. 

PROOF. Let U be a finite dimensional subspace of X which is (1 + e/2)-norming 

over F. Let K d~note the basis constant for (y,) and let e' = e/4K. For i = np +j, 

choose k~ in Ij so that 

8 ~ 
sup ly ,(u)l < - -  
t lull~l 21+1 
u ~ U  

Then, for any sequence (at) of scalars, 

sup <= 
Ilull _~t 
u 6 U  

However, ]a t ] < 2Kll  a,y , II, so we have 

8 
sup < a,Y ,ll. 
IlullNt 
u ~ U  

Thus, setting I~. = {k~ I i = np + j for some p} gives the desired result. (It should 

should be noted that with a little more work, the a priori assumption that (yn) is 

basic may be dropped.) Q.E.D. 
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The next proposition gives a finite dimensional decomposition of a subspace 

of  X which has the desired properties. The techn!que is a modification of the 

Mazur-Day-Gelbaum technique for selecting basic sequences. The primary 

modification lies in the norming of  a finite dimensional subspace of the form 

Xo @ X ~ @ ... G Xn at each stage before Xn has been specifically selected. 

PROPOSITION 1. Suppose X is non-quasi-reflexive. Then there is a bounded 

biorthogonal system (x~; hn) with (xn) c X such that ( ]~k=j Xnp+j[ 0 < j  < k 

< or) is bounded, and for x in [x~], 

n.+p 

x = l i m  E h.(x)xn . 
p -'-~" oO n = O  

PROOF. Pelczynski [161 showed that for each k, X contains a basic sequence 

(u~ k~) which is non-l-shrinking for 0 < l < k. The subspace [UnCk~ I 0 <= k, n < oo] 

is therefore separable and non-quasi-reflexive. Thus, with no loss of generality, 

we assume that X is separable. 

By Theorem 1 and Remark 1, there is a bounded basic sequence (Yn) c X*, 

a bounded sequence (fn) c X** and a partition (In) of  the integers into pairwise 

disjoint infinite subsets such that 

fk(Yn) = ~ 1  if n e l k  
t 0 if n~lk. 

Further, we assume by Remark 2 following Theorem 1 that (Yn) is w*-basic, and 

hence w*-null Let ~ > Ilfn II for all n and choose 0 < 8~ < 1 for all i with 8~ ~ 0. 

The main difficulty in the proof is to guarantee that the natural projections of 

[x~] onto [Xo,..., xnp+p] are bounded independently of p. To do this we will in- 

ductively define the x~ s in blocks (Xn~,'",Xnp+l,) and define finite dimensional sub- 

spaces G O c G, c . . .  of X* so that Gp norms [Xo, .-., xn, +p] and [xn, § 1,'"1 c (Gp).. 

It is necessary to replace the f~'s by related functionals, J~'. At the p-th step of the 

induction, we will make sure that f j ( g ) =  g( ~ = j  xn~+~) for g ~ Gp, 1 < j < p; 

and f~+ 1 e (Gp) . Then we pick Gp+ 1 D Gp so that Gp+ l norms Z = [Xo, "" x~+p, 

f[ , '" ,fp '+ 1]. Now we use local reflexivity to reflect Z through Gp+l;xj goes to xj 

and f / g o e s  to _EP.+~.,=~ xn,+j (this defines (x~+, ..',x~+~+p+l)). Thus, (xn~+~,..., 

�9 ",xn~+~+p+l) ~ (Gp)• Finally,  local reflexivity will guarantee that 

Gp+~ norms [Xo, "",xn~§ and f j ( g ' ) =  g( ] ~ + ]  xn,+j)for  g~Gp+l, 

l = < j = < p + l .  
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For the first step, let Go be a finite dimensional subspace of X* which (1 + %)- 

norms [fo]. By Helly's theorem, we pick x o in X with I[ Xo I[ < 2 such that 

g(Xo) =fo(g) for g in Go. For convenience of notation later, we now rename 

fo = f g .  
Suppose (xkl0 < k < n p  + p), (f[[ 0 < i < p), and finite dimensional sub- 

spaces Go c G~ = ... =Gp of X* have been chosen to satisfy the following 

conditions: 

1) For each j, 0=<j =< p there are functionals ~bo,...,q5 j on [x,j+i]0 < i<=j] 
of norm < 2 with the system (x,j+~, qS~10 < i<j) biorthogonal. 

2) G~ is (1 + ~)2 norming over [xk I 0 < k _< n~ + i] for 0 < i < p. 

3) ( x , , + , + j l 0 < j <  i+I )=(G, ) •  for 0 <  i<p. 

4) (11 ,=j x,,+jl[ [ j<k<p)  is bounded by 6), for O<j<v.  

5) 9( Z p,=j x,,+j)=fj(a)forgzGp, O<j<p.= 
6) [lY,'[I < 3), for 0 < i =<p. 

7) There exist infinite sets I'k =I,, k = 0, 1, ..., so that for each i, 0 < i<_ p, 

f /agrees withfi  on [y ,  I n ~ U I~]. 

Let (1'),...,(7') be the statements above for p + 1. By Lemma 1, pick infinite sets 

I~ = it', for all k so that the natural projection onto Gp from G v @ [y ,  ] n ~ w I~] 

has norm < 2. Hence, there exists f~+l in X** with liT;+ II < 3), so that f~ + 2(9) 

= 0 for 9 ~ Gp, and such that f~+~ agrees withfp+l on [y.] w/~3. This satis- 

fies (6') and (7'). 
Since y . ~ O ,  and each Ik is infinite, there exist, for 0 < i < p  + 1, qi~I" 

so that 

n + p  

z l < 1/4p. 
k = O  

Now select a finite dimensional subspace Gv+ 1 of X*, Gv+1= Gp t3 (yr 

0 < i < p + 1) such that G~+I is (1 + ev+l)-norming over F = [(Xk[0 < k  

< nv+ p) t3 (f~'[0 < i < p +  1)] cX**.  By the principle of local reflexivity 

[11], there is an operator T : F ~ X  such that T is the identity on [Xkl0 < k 

< nt,+p], T is a (1 + ev+~)-isometry and 9(Tf)=f(9)  for f~F, 9 ~ Gl,+l. 
Define x,p+,,'",x,p+,+p+l by x,p+l+j = T f j -  ~ = j  x,,+i for 0 < j  < p + 1. 

Thus Tf] = Z F+j ~ x,,+j for 0 < j  < p  + 1, so that (4') and (5') hold. Since 

Gp=Gp+ 1 a n d f ~ + l ~ G  ~ we have from (5) that (3') holds. Since Gp+l is 

(1 + ep+ 0-norming over F, local reflexivity guarantees that Gp+ ! is (1 +ep+ ~)z_ 
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norming over [x, 1 0 < k < n p + l + p + l ]  so that (2') holds. Now, for 0 < i  

< p + 1, 0 < j < p + 1, one again has from local reflexivity that yq,(x,,.l+j ) 
a p =f~(Yq,) - ~k=j )'q,(Xnk+j), SO that yq,(X,p§ ) > 1 - 1/4p >- 3/4 and 

< 1/4p when i ~ j .  It is easy to compute that the functionals 

defined by c~,(xn,+j) = ~5,j, i ,j  = 0, 1, . . . ,p + 1, satisfy [I  ,11 ---< 2 This completes 

the construction of (x~). 

From (3) we see that, since (Gp)• ~ [x lk _>_ no+d, and by (2), the natural 

projection S o of [x.]  onto [Xk[O ~-~ k ~-~ n o +p]  has norm < (1 + •p)2o Thus, 

(Sp) determines a finite dimensional decomposition of [x J ,  since (if (h.) are the 

functionals in [x.]* biorthogonal to (x.)) then 

np+p 
Sp(x) - -  Z hk(X)Xg. 

k = 0  

The assertion of the boundness of (1I k E o=i X~p+jl l) is guaranteed by (4). Q.E.D. 

It should be noted that if, at each stage of the construction above, the collection 

(fd - ]~ kP_-0 X,~,f[ -- ]~ ~=1 X~+I, "",f~) were basic with constant independent 

of p, then local reflexivity would guarantee the same for (x~+,,x~,+,+~,..., 

x,~+,+o+l ). If  we then set Pn.+j = Sn.-1 "Jr a~')(I -- S,._~)S,. where 

u~r) : [Xn.," ' ,Xnr+r ] ~ [Xnr, '" ,Xnr+j ] 

is the natural projection, we would have [ 0 __<j =< r < oo) bounded, so 

that (x,) would already be a basis for its span. The boundedness of(l[ Y~ ~=~ xo + l I) 
would guarantee that it is non-k-boundedly complete for all k as desired. The 

rest of  this section is devoted to the realization of this situation. 

LEMMA 2. Suppose that (y,) is a bounded sequence in X with inf. m I1 Y.--Ym[] 
=~ > O. Given e > O, there exist integers mx < m2 "" such that (Y2m, - Y2m,+~) 

is basic with basis constant < 1 + e. 

PROOF. Let Z be a seperable subspace of X* with norming constant 1. By 

passing to a subsequence of (y,), we may assume that lim~ z(y~) exists for each 

z e Z. Thus z (y2 i -  Y2,+ 1) "-+ 0 for z e Z and 1[ Y2,-  Y2,+l II --- > 0 Hence 

(y2~-  y21+l) has a subsequence with the desired properties (cf. [12]). Q.E.D.  

THEOREM 2. Suppose X is not quasi-reflexive. Then X contains a basic 

sequence (z,) which is not k-boundedly complete for any k. In fact, (z,) is bounded 

away from 0 and (][ z.. II)  o k ~= ~ is bounded. 



Vol. 14, 1973 BASIC SEQUENCES AND NORMING SUBSPACES 363 

PROOF. By Proposition 1, there exists a bounded biorthogonal sequence (x~;f~) 

in X with I[f~ [[ = 1, (ll k o o ~,~=~Xn~+~l[)~=Ok= ~ bounded by, say 2, and for each 

x ~ [ x J ,  x=limr~OE~k~=+OPfk(X)X k. We may assume [x~] = X .  For p = 0 , 1 , . . . ,  

let Sp be the natural partial sum projection of X onto [XR]'k~=+o p and let Rp 

= I - S ~  be the remainder projection. By a standard renorming technique, we 

may assume that II s,][ : [[ R,  l[ = 1 for each p. 

Set Y =  If , ]  in X*. Now :for each fixed j, ( 2E k do =j X~ +j)k =j weak*-converges 

in Y* to an element ~bj with ][~bj 1[ < 2. (Here 2~ denotes the element of Y* defined 

by 2n(y) = y(x,). Since [] S~ [1 = 1 and Spx -~ x V x ~ X, ^ is an isometry.) Let 

R~, = (R~ It)* (P = 0,1, . . . ) ; /~p is just the remainder projection on Y* defined by 

n p  + p 

/~y* = (w*) ~ y*(f/)2~ = y* - ~ y*(f~)2~. 
i =n~ +p+ 1 i =0  

On the linear span sp(~n) of (~n), we define new norms (p,) by Pn(~)= ]] ~ ]]. 

Certainly pn(~) = ][ ~ ,~  [] < [[ R, ][ ][ ~ [I = [[~ ][, so (p,) is equicontinuous. Thus, 

there is a subsequence (pq,) of (p,) with pq,(q~) ~ p(~) for each ~ e sp (q~n). p 

is also a norm on sp (~b,) __< 2 and p(dpi- (~j) >= lira i n f ( ~ i -  ~j)f~p +1 +t = 1 for i # j. 

Therefore, by Lemma 2, there are integers ml < m2< "" so that (~2m,-  ~Zm,+l) 

is basic in (sp ~n, P) with basis constant __< 2. Setting/~i = ~2m,--~2m,+ 1, we have 

pq, ---} p pointwise and (pq,) is equicontinuous, hence pq, ---} p uniformly on compact 

sets; in particular, uniformly on unit balls of finite dimensional subspaces of sp (~,,). 

Thus, there exists a subsequence (p'q,) of (pq,) with ]p'q,(~) - p(~)[ < 2p(~) for 

~ [/~i])= 1 and i=0 ,1 , - . - .  Also, we may guarantee that, for each i, q[+l is large 
R i enough so that the restriction of ~qq,,+ 1 to q,,[~j]j=l is a 2-isometry for each 

i =  0,1,- . . .  (Here ,.~ = (S*]r)*.  Note that []~p]] < 1  and ~py* ~'y* for 

y* ~ Y*, so that [] Spy*[[---} ][ y* ]] for y*~ Y* and thus uniformly for y* in compact 
subsets of Y*.) 

~, ~,~ F o r e a c h i = 0 , 1 , - . . a n d j = 0 , 1 , . . . ,  i define zn,+g in X by z~,+j-- q,+, q, j. 

[z~,+j]j = o onto For each i, the map Zn,+j~ ~j extends to a 4-isometry from 
i i [~j]j=o when the latter space is given the p norm. Hence (Zn,+~)j~ o has 

basis constant < 8. ~ ' _ But (Zn,+j)j= o ~ (Sq'.~ -Sq , )X ,  so (z,) is basic with basis 

constant < 8. Finally, note that (z~,+j) is bounded away from 0 (since (~j) is), 

and for each fixed j, we have E/ '=j+t  ~,,+~ = S-q'R~'ffi~, so that 

(II x,,=~ zn,+~ [1)~~ ~:o is bounded. Q.E.D. 

Finally we have: 
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COROLLARY 2. X is quasi-reflexive if  and only if  every basic sequence in X 

spans a quasi-reflexive subspace. 

In [5] it was shown that if X is non-quasi-reflexive, then there is an infinite 

dimensional subspace Y of X such that X / Y  is non-quasi-reflexive. As promised in 

the introduction, we have the following sharpening of the result. 

COROLLARY 3. I f  X is non-quasi-reflexive, it contains a non-quasi-reflexive 

subspace Y such that X / Y  is non-quasi-reflexive. 

PROOF. Let (zn) be the basic sequence of Theorem 2. Let Y = [z,k+jlj is even]. 

The verification is straightforward. Q.E.D. 

REMARK. A stronger version of Theorem 2 can be easily proved when X has 

a basis and X* has the bounded approximation property. Indeed, in this case, 

pick a separable subspace Z of X* so that the natural map of X into Z* has 

infinite codimensional range (this is possible when X is not quasi-reflexive). By 

[11, Remark 4.10]. there is a basis (x,) for X with biorthogonal functionals 

(x*) satisfying Ix*] ~ Z. It is clear that (x,) is not k-boundedly-complete for any k. 

PROBLEM 1. Suppose X has a basis. If X is not quasi-reflexive, does X possess 

a basis which is not k-boundedly-complete for any k? If X* contains an infinite 

codimensional norming subspace, does X have a basis which is not k-shrinking 

for any k? 

PROBLEM 2. If X is separable and X* contains an infinite codimensional 

norming subspace, then does X have a quotient which has a basis which is not 

k-shrinking for any k? 

4. The Sch//ffer question 

We saw in Section 2 that if X* admits only finite codimensional norming 

subspaces, then a norming subspace M will norm X / Y  whenever Y is M-closed. 

Here we show that there is always a counterexample to this statement when X* 

contains a norming subspace of infinite codimension. 

We begin with a known lemma (cf., e.g., [4]), but include its proof for the 

convenience of the reader. 

LEMMA 3. Suppose Y is a subspace of X and R: X* ~ Y* is the restriction 

mapping (Rx* =x* [ r for x* ~ Y*). I f  N is a norming subspace of Y*, then 

R - I N  is a norming subspace of X*. In particular, i f  Y* admits a norming 

subspace of infinite codimension, then so does X*. 
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PROOF. Let ~. be the norming constant of  N. Note that R -  1N is simply the set 

of all extensions of  functionals in N to elements of X*. 

Suppose x is a unit vector in X. If  d(x, Y)>= (32) -1, then there exists x * e  Y• 

R - 1 N  such that Ilx* II = 1 and x*(x)>__ (32) -1. (Here d ( x , Y ) = i n f { [ I x  + y I1: 

y ~ Y}.) On the other hand, if d(x, Y)< (32)-1, then we can pick y ~ Y with 

II x - Ylt < (32)-1" Thus there exists y*~ N with tlY*ll <= 2 and y * ( y ) =  II Y II 

> 1 - (32)-1. Letting )~* be a Hahn-Banach extension of  y* to an element of  

X*, we have that ~ * ~ R - 1 N  and )~*(y)-  ~*(x)_~ 2(32) -1. Hence ~*(x) 

>__~*(y)-3 -1 >= 1 -  (32) - 1 -  3 - 1 -  > _ 3 -1 , whence R - I N  is norming over X. 

Q.E.D. 

PROPOSITION 2. Suppose X1 is a subspace of  X for  which Y =  X /X 1 is not 

quasi-reflexive. Assume that X ~  contains a norming subspace M 1 of  infinite 

codimension. Then there exists a norming subspace M o f  X* so that XJs ~ M 

is total over Y but not norming over Y. 

PROOF. A more precise way of phrasing the final part of the conclusion is that 

(Q*) - I [M]  is a total, non-norming subspace of  Y*, where Q : X  ~ Y is the 

quotient map. 

Since dimM~ = oo ( •  taken in X~*), there is a biorthogonal sequence (zi,z*) 

Z *  with (zi)~ Xl*and z* unit vectors in M~-. By replacing M 1 with ( i )• we 

may assume that [z?]  = M~-. 

Let Mo be the inverse image of MI under the natural restriction mapping R 

from X* onto X*. Mo is norming by Lemma 3. Also, one checks easily that 
r 

[7,1 M o = R M1 = R* = [R*zi]. Set R*z i = F: i. 

Since Y is not quasi-reflexive, Y* contains a total, non-norming subspace, say 

N1 (cf. [5]). Thus by [8],  Y + N ~  is not closed in Y**; hence, there exist unit 

vectors (rh) c NiL with doll, Y) ~ O. By replacing NI with (t/i).~, we may assume 

that [t/i] =N1 ~. Now Q** is onto Y** since Q: x -~ Y is the quotient map, so 

we may choose (~i)c X** with Q**qi = th. We easily check that Q*N 1 is equal 

(qi) ~ X~. Indeed, Q ' Y *  = X-~, and i f f e  Q'N1,  s a y f  = Q*g with g ~NI ,  then 

~(f)  = ~/Q*g = (Q*fh)g -- th(9) = 0. On the other hand, if f ~  (rh)• ~ X~- then 

f = Q * g ,  for some g ~ Y*, and t/ig = Q**qig = ~hQ*g = qi(f) = 0, whence g e (~h).L 

N 1 . 

For ei > 0 and el -~ 0 fast enough ,we extend the map ~* -~ ~,* + eiqi to a weak* 

automorphism on X**. To do this, pick ~'leX* with R~, i = zi (so that 

(~,i;~,*) is biorthogonal) and define T : X* ~ X* by TX *  = Z eiqi(x*)~ i. If ~i-~ 0 
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fast enough, I[ Tll < 1 / 2fl < 1, where fl is the norming constant of Mo. Thus I + T 

is an automorphism on X* and it is easy to check that M -- (I + T) -  ~ M o is 

norming. Further, M" = (I + T*)Mo'= (I + T * ) [ ~ ]  = [(I + T*)(~',*)] 
I 

t ' - -  

= [z? + 

Observe that (Q*)-IM is indeed a total, non-norming subspace of  Y*, since 

M n X ~  = (~q* + e,Fh)_L n X ~  = (Fh)_LnX~-(because ([,*) c Xt  x-L) = Q'N1, and 

hence ( Q * ) - I M  = N1. Q.E.D.  

We now have the ma in  result  o f  this  section. 

THEOREM 3. I f  X *  contains an infinite codimensional  norming  subspace,  

then X *  D M norming  and X D y M-closed  such that  M N Y+ f a i l s  to norm 

XlY. 

PROOF. Let Y be the subspace of  X from Corollary 1 such that X / Y  has a 

norming infinite codimensional subspace in its dual. This forces X / Y  to be non- 

quasi-reflexive, so Proposition 2 gives the desired result. Q.E.D 
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